
1

2

3

4

Image Credit: http://www.flickr.com/photos/warquel/3397541204/

5

Fully manual – hit build in your IDE of choice and then manually copy files from the
developers machine

Easy and simple
But never done the same way twice

Image Credit: http://www.flickr.com/photos/gokrzy/478929790/

6

Introduce a checklist to try and ensure the build is done the same way every time
BUT: Humans are not good at doing this kind of thing

AND: Differences between developer machines can give results that are different
from one dev to the next

Image Credit: http://www.flickr.com/photos/meccanohig/3277421633/

Works on My Machine: Scott Hanselman,

http://www.hanselman.com/blog/IntroducingRockScroll.aspx

7

The entire process is automated, with no human intervention

Reliability and consistency are improved

BUT: Still subject to the differences between developer machines

Image Credit: http://www.flickr.com/photos/puuikibeach/5528930610/

8

More than just one step builds

Scheduling, triggering, a dedicated build machine

All builds done by the same process on the same machine

Very reliable, predictable, quick turnaround on changes without compromising,
without skipping steps

Image Credit: http://www.flickr.com/photos/hugo90/4195673863/in/photostream/

9

The ultimate goal – from commit to go live in minutes

Image Credit:
http://www.flickr.com/photos/terryansimon/2324103766/in/photostream/

10

11

The first step is to be able to run a build in one step

And, no, Control-Shift-B in Visual Studio doesn’t count

12

13

14

15

Make: The original build automation tool
Great for C programs, but not really up to date with modern environments

NAnt/Ant: Mature tool with Xml based build files
http://nant.sourceforge.net/

MSBuild: Microsoft’s build tool.

Visual Studio project files are MSBuild scripts.

Some say inspired by NAnt
http://msdn.microsoft.com/en-us/library/0k6kkbsd.aspx

Rake: Ruby Make

http://rake.rubyforge.org/

Psake: Powershell Make

http://codebetter.com/jameskovacs/2010/04/12/psake-v4-00/

Which one to choose?

Technology – stick with a tech platform familiar to your team
Don’t introduce Rake if you have no other Ruby code

Support – how much support is available for the product you choose?
Documentation – how much is there?

16

Need to find a level that is comfortable for your team, your organisation

16

Start Small
Don’t try to do everything at once

Start small, build it incrementally; And always keep it tidy

Your build scripts are code too
My approach: Improve things one step with each build,

each time I need to push a release through the system make one thing easier to do
next time.

Keep it Simple

Keep your targets simple and easy to understand
Yes, you can get all meta and write reusable tasks controlled by metadata and

variables you define in the script

I’ve done it!
Turned out to be needless complexity.

Rely on the power of the tool you’re using and keep things straightforward
Refactor your targets if they start getting complex

Test for Prerequisites
Some of your targets will have prerequisites

Break these out into separate targets that test for them
Fail the build if they’re not found

17

Naming

Name things well

Use standard names for standard things
clean • compile • build • test

Documentation

Your build scripts are only going to have occasional maintenance

No one – not even you – will remember all the details
So put comments/documentation into the build script so that anyone can maintain it

17

18

Keep your targets simple and easy to understand

Yes, you can get all meta and write reusable tasks controlled by metadata and

variables you define in the script
I’ve done it!

Turned out to be needless complexity.
Rely on the power of the tool you’re using and keep things straightforward

19

Keep your targets simple and easy to understand

Yes, you can get all meta and write reusable tasks controlled by metadata and

variables you define in the script
I’ve done it!

Turned out to be needless complexity.
Rely on the power of the tool you’re using and keep things straightforward

20

Keep your targets simple and easy to understand

Yes, you can get all meta and write reusable tasks controlled by metadata and

variables you define in the script
I’ve done it!

Turned out to be needless complexity.
Rely on the power of the tool you’re using and keep things straightforward

21

22

With one step builds you can automate some of this
But you’re still doing much of it manually

And what happens when someone takes a shortcut …

… by committing a trivial fix without compiling

… or by not testing changes after updating

23

Continuous Integration is about taking that feedback loop and turning the volume up
to 11

24

It’s about being able to schedule builds to happen at particular times
Or to be triggered by regular events

25

And about having the alarm raised when something goes wrong

26

CruiseControl.Net – ThoughtWorks

TeamCity – JetBrains – Not open source, but free

27

28

Suggested Build Configurations

Integration – or Continuous Integration

Triggered on check in
Compilation + Unit tests

FAST feedback

Formal

Everything required for release of the software
Triggered daily – at lunchtime

Compilation + all testing + archiving artefacts

Documentation

Generate documentation e.g. api – typically developer focussed

Analysis
Additional stuff for consumption by the team

Triggered when a formal build succeeds

Static code analysis – Test coverage

29

Once you have your build in place,
You can start advertising the state of the build

Automated emails, especially to the person who broke the build

30

31

