

confinurous

Continuous Integration

Bevan Arps
bevan@nichesoftware.co.nz
@unrepentantgeek

CONTEXT

A
-~
\; Continuous

- Deployment

Image Credit: http://www.flickr.com/photos/warquel/3397541204/

Fully manual — hit build in your IDE of choice and then manually copy files from the
developers machine

Easy and simple
But never done the same way twice

Image Credit: http://www.flickr.com/photos/gokrzy/478929790/

Introduce a checklist to try and ensure the build is done the same way every time
BUT: Humans are not good at doing this kind of thing

AND: Differences between developer machines can give results that are different
from one dev to the next

Image Credit: http://www.flickr.com/photos/meccanohig/3277421633/

Works on My Machine: Scott Hanselman,
http://www.hanselman.com/blog/IntroducingRockScroll.aspx

Contirwous

‘
B sy COontinuous

Integration

SRR s
. im
L o

The entire process is automated, with no human intervention

Reliability and consistency are improved
BUT: Still subject to the differences between developer machines

Image Credit: http://www.flickr.com/photos/puuikibeach/5528930610/

More than just one step builds

Scheduling, triggering, a dedicated build machine
All builds done by the same process on the same machine

Very reliable, predictable, quick turnaround on changes without compromising,
without skipping steps

Image Credit: http://www.flickr.com/photos/hugo90/4195673863/in/photostream/

The ultimate goal — from commit to go live in minutes

Image Credit:
http://www.flickr.com/photos/terryansimon/2324103766/in/photostream/

10

code.flickr

DexiSog Forums APl dobs

® -

Welcome to code.flickr
Your one-stop shop for information, gossip and discussion with the Flickr developer community

You can read the DevBlog, dissect the Uploadr, or hone your APl wizardy in the forums.

Ia

P nxd.rdnvbpmnumremm
l)t 1't be so PuSH\

\oakmlh:ﬂ!hn;ﬂhnmldheool"rhoahhyw
sebscribe to the output of a Flicks AR
aggrogator the ability to get the resciis 3 -
as... Oh wait. That was a while ago. Wouldnt

you didn't have to poll our API over asd o
Read oo

Elicks ..c w Supports QAuth a.ca

Etkc:hm,lhx.\i'LL\nlﬂn: P

= 1 2018

Inspiration Tuesday Pooted by standardpl

Fome RO

uu, .‘_-:erthrh..:...\h

¥ brear

"hc. _"_\Apugu‘\\uﬁ_,,.) AbY raphen oo < MACKING UMLOADER: RECED T oSt ;

11

ONE STEP BUILDS

The first step is to be able to run a build in one step

And, no, Control-Shift-B in Visual Studio doesn’t count

12

Perform the build

in one step

with no intervention

13

Some Definitions

Target
Dependency

e — Compile

14

What to include?

Things to build Things to do

Executables Unit Tests
Installers AcceptanceTests
APl Documentation Static Analysis

15

Suggested Tools

AA .1,
IViNAING

NAnt/Ant
MSBuild
Rake
Psake

Make: The original build automation tool

Great for C programs, but not really up to date with modern environments

NAnt/Ant: Mature tool with Xml based build files
http://nant.sourceforge.net/

MSBuild: Microsoft’s build tool.
Visual Studio project files are MSBuild scripts.
Some say inspired by NAnt
http://msdn.microsoft.com/en-us/library/Ok6kkbsd.aspx

Rake: Ruby Make
http://rake.rubyforge.org/

Psake: Powershell Make
http://codebetter.com/jameskovacs/2010/04/12/psake-v4-00/

Which one to choose?

Technology — stick with a tech platform familiar to your team
Don’t introduce Rake if you have no other Ruby code
Support —how much support is available for the product you choose?
Documentation —how much is there?

16

Need to find a level that is comfortable for your team, your organisation

16

Tips

Start Small
Keep it simple
Test for prerequisites
Naming
Documentation

Start Small
Don’t try to do everything at once
Start small, build it incrementally; And always keep it tidy
Your build scripts are code too
My approach: Improve things one step with each build,
eachtime | need to push a release through the system make one thing easierto do
next time.

Keep it Simple
Keep your targets simple and easy to understand
Yes, you can get all meta and write reusable tasks controlled by metadata and
variables you define in the script
I’'ve done it!
Turned out to be needless complexity.
Rely on the power of the tool you're using and keep things straightforward
Refactor your targets if they start getting complex

Test for Prerequisites
Some of your targets will have prerequisites
Break these out into separate targets that test for them
Fail the build if they’re not found

17

Naming
Name things well
Use standard names for standard things
clean e compile e build e test

Documentation
Your build scripts are only going to have occasional maintenance
No one — not even you — will remember all the details
So put comments/documentation into the build script so that anyone can maintain it

17

Naming

require.xyz
compile.xyz
test.xyz

18

ctarget remesomp Le arromh lies® descriptions"m

§1-- pefame the darpchory wherp e mgect 4o fand m=build --
sproperty s moald she™ valoes™C YVWTHERS M roastt K
cproperty names"mehnld e valoes"$ path cosbin

cfaal pessages"U1dn't find ${e=buald exc” unless="%{

t Uplat
erslm 5 ctarget name=" reguire msbuald

- descrlptlon="Locate msbu
[

Laimisfe 1
fanporly ¢l-- Detine The directory where we expect to find msbulld -->

£ Ligainr

+ aigainr-

« amgEarl {prope Pty mames="msburld die

st b vl Lue="C YHWINDOWHS Maicrosof &t N
cattra
cattra

Fr—— {property names"msburld ox

< fasmanlas value="%{ path combinc{ msbuild dir,

-~ Compa

CENEL O
sarg f1l umless="%{ fi1le exists{ mshuald exe)} 1°
carg val
carg val

£ femers </target >

ifarl message="Didn’t fond R{msbuarld exel}’

£ LaEgELS

Keep your targets simple and easy to understand

Yes, you can get all meta and write reusable tasks controlled by metadata and
variables you define in the script
I’'ve done it!
Turned out to be needless complexity.
Rely on the power of the tool you’re using and keep things straightforward

19

ctarget remea”
dessraghl
drepends

-~ Update our
(versiom startd

< Ginerate o

casmanfo langud)

CAmports)
CUrport e
Larport fum

</ imports >

Cattrbutes>
cattributs
cottributs

cSattrabutes>

</ssminfo>

== Campale ow
CENEC prograos”
<arg file="
carg valoes",
carg valopes'

clenecs

¢ targets

" <target name-"compile v
description- “Gene

¢!-- Update our version number -->
<version startdates May 2818

path="${src dir}\version txt

<!-- Generate our shared AssemblyInfo file -
<asminfo language="CSharp
output="sLrc\Wersioninfo ¢
<amports>
<import namespaces"Systen”
<import namespaces"System He
</amports>
<attraibute s>
<attribute type="AsscabliyVers
value="f{ bu
<attrabute types="Asseablyk ileVersie
value="%{ bu
</attrabutes>
</asmnfo>

¢ftarget>

Keep your targets simple and easy to understand

Yes, you can get all meta and write reusable tasks controlled by metadata and

variables you define in the script
I've done it!
Turned out to be needless complexity.

Rely on the power of the tool you’re using and keep things straightforward

20

<target name="compile.assemblies’
descraption="Build output from source

depends="requure.msbuild, compile.wversionInfo™:

<l-- Compile everything --»

<exec program="%{msbuild exe}"s
<arg file="Nichebashboard. s1n"/»
carg value="/t robulld" >
carg value="/verbosity quiet" >

< fenecy

</targets

Keep your targets simple and easy to understand

Yes, you can get all meta and write reusable tasks controlled by metadata and
variables you define in the script
I’'ve done it!
Turned out to be needless complexity.
Rely on the power of the tool you’re using and keep things straightforward

21

CONTINUOUS INTEGRATION

22

feedback

Commit

4

—

With one step builds you can automate some of this
But you're still doing much of it manually

And what happens when someone takes a shortcut ...

... by committing a trivial fix without compiling
... or by not testing changes after updating

23

Continuous Integration is about taking that feedback loop and turning the volume up
to 1l

24

It’s about being able to schedule builds to happen at particular times
Or to be triggered by regular events

25

And about having the alarm raised when something goes wrong

26

Suggested Tools

CruiseControl
CruiseControl.Net
Hudson
TeamCity

CruiseControl.Net — ThoughtWorks

TeamCity — JetBrains — Not open source, but free

27

TS Projects geats (5 Bl Queve (3)
<

v Amazon API client
Apache Ant
Apache Ivy

v Artifactory Plugin for TeamCity

Bundler hetp:/ forthub.comy carlhudatundier it

Cucumber hitp://cukes.info

Genome Query hitp://confivence. jetbeains. not/ display/GORY/Genome + Query
Google Web Toolkit

Gradle

Groovy

IdeaVIM

28

Configurations

Suggested Build Configurations

Integration —or Continuous Integration
Triggered on check in
Compilation + Unit tests
FAST feedback

Formal
Everything required for release of the software
Triggered daily — at lunchtime
Compilation + all testing + archiving artefacts

Documentation
Generate documentation e.g. api — typically developer focussed

Analysis
Additional stuff for consumption by the team
Triggered when a formal build succeeds
Static code analysis — Test coverage

29

Information radiators

Playground.Tools, | runk

B % Socows

“Playground, Trunk

B A2 Teams pavena 177

“heckHeader, Trunk

w6 Socomes

Once you have your build in place,
You can start advertising the state of the build

Automated emails, especially to the person who broke the build

30

thanks

twitter
email
blog

unrepentantgeek
bevan@nichesoftware.co.nz
www.nichesoftware.co.nz

31

