
While much of the content is generic
could apply to any platform

I’m assuming a .NET environment,
and where a language is necessary, C#

Focus on Code, not on other things; 
not that other things are irrelevant,

but need to focus somewhere.

Apologies in advance to Visual Basic Developers,
though most stuff will still be relevant

License
This presentation licensed under the

Creative Commons Attribution License
http://creativecommons.org/licenses/by/3.0/

1

http://creativecommons.org/licenses/by/3.0/


4 Key Terms
Though not exclusive, these are useful.

Perspicuous
Clarity

Don’t Repeat Yourself

Discoverable
Make it easy to navigate

Principled
Every problem has multiple solutions

All software is opinion

Safe
No booby traps, sinkholes or mazes

2



Naming 
of types, of methods, of members, of locals

Naming is important. 
Clarity, Accuracy, Intelligibility and Reliability

Names are the first aspect encountered by other developers, 
may be the most persistent and long lived aspect, 

will be present even if everything else is lost

Names need to be clear and accurate (singular vs plural).
Trustworthy

Appropriate to Culture – e.g. “C” prefix in MFC

Ubiquitous Vocabulary

Design Pattern Vocabulary

http://www.definr.com

3

http://www.definr.com/


What does this code do?

4



This is the same routine as the previous slide.

Note how the improved naming makes 
the routine easier to understand.

5



What behaviour do you expect
from a FileExists() method?

Do you expect the highlighted code?

This one silently deletes zero byte files!?!?

Simulated example, but reproduces a case
discovered in production code.

6



We call talk about commenting our code,
but often the comments are rubbish.

Anyone seen comments that were just plain wrong?

Comments should be intentional, not declarative.

Don’t Repeat Yourself
(the DRY principle)

Comments shouldn’t indicate what is going on, 
but why we need to do it. 

Don’t just write comments that can be worked out by reading the code –
give more information, things that otherwise would be guessed at.

Include references – to documents, websites –
so that others can learn what you know.

If something might need to be improved, leave reminders to later self
If something didn’t work, leave notes so the next person doesn’t repeat the mistake

Not everything needs commenting – good naming helps a lot.

7



Here’s a sample object with some commentary.

Includes key information: Immutable

8



Another class header

Describes nature of files
processed by the reader

9



Every dependency has a weight

Too many dependencies
Or the wrong dependency

Can weigh down your system

Don’t take on a dependency unless there is real benefit

Important to balance cost verses benefit

Don’t do it for a single method!
(Unless that single method is uniquely valuable and hard to reproduce)

Microsoft Excel Team
Focussed on eliminating dependencies
Reportedly had their own C Compiler!

10



Don’t write any more code than you need to

Code that doesn’t exist can’t have bugs!

Don’t stop when it seems to work

Is any of the code extraneous?

Can the code be simplified and still work properly?

Is there an API that delivers much (all?) of what’s required?
(Tension with Managing Dependencies)

11



Code doesn’t exist in isolation

There are always assumptions

Make the assumptions explicit on your code

Where possible, write tests and throw exceptions

12



Example of tests to ensure constructor
prerequisites are satisfied.

Could also use Code contracts.

13



14



15


