K/IAINTAINABLE CODE

. -
; N >

Write Better Cadé <
]

o ol Bevan Arps

'.’7 #’(\

bevan@niehesoftware.co.nz

While much of the content is generic
could apply to any platform

I’'m assuming a .NET environment,
and where a language is necessary, C#

Focus on Code, not on other things;
not that other things are irrelevant,
but need to focus somewhere.

Apologies in advance to Visual Basic Developers,
though most stuff will still be relevant

License
This presentation licensed under the
Creative Commons Attribution License
http://creativecommons.org/licenses/by/3.0/

http://creativecommons.org/licenses/by/3.0/

 ?

/_..

Perspicuous Discoverable | Principled \ Safe

* Clear * Mapped | = Reliable l * Reliable
* Concise | « Signposted f * Intentional | * Consistent
« Accurate / « Narrated = Deliberate /'/--.‘, Trustworthy

4 Key Terms

Though not exclusive, these are useful.

Perspicuous
Clarity
Don’t Repeat Yourself

Discoverable
Make it easy to navigate

Principled
Every problem has multiple solutions
All software is opinion

Safe
No booby traps, sinkholes or mazes

Perspicuous Code

> id N
. .’]
¢

AN
-

ngs wel!
&~
4

o e

Nameé thi

Naming
of types, of methods, of members, of locals

Naming is important.
Clarity, Accuracy, Intelligibility and Reliability

Names are the first aspect encountered by other developers,
may be the most persistent and long lived aspect,
will be present even if everything else is lost

Names need to be clear and accurate (singular vs plural).
Trustworthy
Appropriate to Culture — e.g. “C” prefix in MFC

Ubiquitous Vocabulary
Design Pattern Vocabulary
http://www.definr.com

http://www.definr.com/

public IS5t am_Rsrestring id)

string T = Fn(id);
if (IFe(f))
pDIrsrc{id, f):
return cestrm(f);
}

What does this code do?

public I1stream GetResource(string identifier)

string filename = GetFilename(identifier);

stri
iT (!Fileexists(filename))

pownloadresource(identifier, filename);

return Createstream(filename);

This is the same routine as the previous slide.

Note how the improved naming makes
the routine easier to understand.

private bool Fileexists(string filename)

}f (IF JExists(filename))
}

return false;

return true,

What behaviour do you expect
from a FileExists() method?

Do you expect the highlighted code?
This one silently deletes zero byte files!?!?

Simulated example, but reproduces a case
discovered in production code.

Perspicuous Code

e |
¢

AN

. -
N

Prov,ide‘“Commentq ry
R4

»
»

)

o e

We call talk about commenting our code,
but often the comments are rubbish.

Anyone seen comments that were just plain wrong?
Comments should be intentional, not declarative.
Don’t Repeat Yourself
(the DRY principle)

Comments shouldn’t indicate what is going on,

but why we need to do it.

Don’t just write comments that can be worked out by reading the code —
give more information, things that otherwise would be guessed at.

Include references — to documents, websites —
so that others can learn what you know.

If something might need to be improved, leave reminders to later self
If something didn’t work, leave notes so the next person doesn’t repeat the mistake

Not everything needs commenting — good naming helps a lot.

Provide Commenta ry
fle E&t Yiew Projea Huld Debug Data Tools Text HeShorper Wandow Help W Pyl Soeen
IStadcs® ShordamaTestacs Farsercs Optioocs Switchcs Parameser.cs | Commanding.od

v w

namespace Niche.Collections.Generic

{

Functionality for an Immutable stack

Each operation returns a new stack
instance.

Type of items in the stack.

public interface 1stack<T>

Push a new item onto the stack

Here’s a sample object with some commentary.

Includes key information: Immutable

Provide Commentary
fle £t View Projeat Buld Debug Data Toots Text HeShorper Wndow Help W Fyll Soeen
Reader.cs® [Stackcs® SherflameTesscs Farsercs Qpboncs Swich.os Parameter.cs

v W

voProj file reader, allows for iteration
over the contents of a vdproj file.

vDoProj files are essentially text files,
containing name-value pairs.

These pairs are organised into named
sections, delimited by braces ('{' and
'}') for scope.

sections may be nested to arbitary depth.

public class

Another class header

Describes nature of files
processed by the reader

Discoverable Code

S ad N
. .’]
¢

AN

. -
N

Manage.your Dependgnci %
2

)

o e

Every dependency has a weight
Too many dependencies
Or the wrong dependency
Can weigh down your system
Don’t take on a dependency unless there is real benefit

Important to balance cost verses benefit

Don’t do it for a single method!
(Unless that single method is uniquely valuable and hard to reproduce)

Microsoft Excel Team
Focussed on eliminating dependencies
Reportedly had their own C Compiler!

Principled Code

e |

y

AN
-

Write Less Code;
&~

)

o e

Don’t write any more code than you need to
Code that doesn’t exist can’t have bugs!
Don’t stop when it seems to work
Is any of the code extraneous?

Can the code be simplified and still work properly?

Is there an API that delivers much (all?) of what’s required?
(Tension with Managing Dependencies)

11

Safe Code

AN
-

Test your Assumpti?ns A
SRV 4

)

o e

Code doesn’t exist in isolation
There are always assumptions
Make the assumptions explicit on your code

Where possible, write tests and throw exceptions

Test your Assumptions
2 ¥

fle E&t Yiew Projea Huld Debug Data Tools Text HeShorper Wandow Help W Pyl Soeen

Updaser.cs = Readercs® IStackes™ ShertfamaTaestscs Parsercs Qptiongs Switchcs

{

cnmandne. Farsar v Farser([Enumarabie<sting> argumants, cbject draer)
public Parser(

IEnumerablie<string> arguments,
object driver)

if (arguments == null)

throw new ArgumentNullgxception(
"arguments”,
“No arguments were provided for parsing");
if (driver == null)
throw new ArgumentNullException(

"driver”,

"No driver was provided to be configured");

Example of tests to ensure constructor
prerequisites are satisfied.

Could also use Code contracts.

13

< ?
:

Maintainable Code

%

y

Any Questions?;
SRV 4
]

o e

14

Bevan Arpss,

. -

bevan@nichesoftwareico/h
http://www.nichesofth'?re.

o e

15

