
Things senior developers 
know

1



I asked a bunch of senior developers 
“What do senior developers know?”

What do Senior Developers know that junior developers don’t

Because a Senior Developer isn’t just a junior developer with more expertise, there’s a 
qualitative difference

2



To put it another way,
“What should other developers learn?”

I’ve seen too many good developers leave the profession to do something else after 5-7 
years because they plateau and run out of challenges.

Yet, I’ve been writing code for over 30 years and I’ve never been learning so much – or 
having so much fun in my job.

Reverend Billy Hollis – has said that he will one day be discovered with his nose between 
the keys because it’s just too much fun to build new stuff.

3



The job is not to write code

Much as we like to write code, that’s not the job

4



What is the job of a bus driver?
(Yes, this is a trick question)

A bus driver’s job isn’t to drive a bus.

A bus driver who drove around all day without picking up passengers isn’t doing his job.

A bus driver who drove around picking passengers all day without letting them off isn’t 
doing his job … and would likely end up on the news.

A bus driver’s job is to help people get where they need to go.

This is why a bus driver who is 2 minutes early is really not doing his job.

5



Our job is to write code to 
amplify business value

Writing code is fun.

But if the code doesn’t impact on business value, it’s a waste of time

Developers are expensive (figure 3 x Annual Salary for an approximate all up cost, including 
support staff, equipment plus rent/heat/power etc)

No one is going to pay me to write code that doesn’t have a significant impact on the 
business

6



Functional requirements
Non-functional requirements

Security of investment

Three different areas to consider

People think that Functional + Non-Functional cover everything
But that ignores the passage of time

7



We are building a business asset

Code doesn’t go away when we release it.

In fact, that’s when it starts delivering value.

Finished features that aren’t in production are inventory

8



You’re paid to think

This means thinking clearly, logically and well

It also means being able to clearly articulate what you think, to make a persuasive 
argument

9



It’s not about being a code monkey 
churning out working code

10



It’s about critical thinking, 
prioritization and strategy

You need to think carefully about what you do and deliver what the business really needs

Sometimes this involves refusing to do the wrong thing

11



Often the first step is 
discover the real problem

Users are really good at coming to us with solutions

But their ideas for solutions are constrained by what they know and believe about 
technology

Once we discover the real problem, we can provide better solutions

Junior Developers are asked “Please implement this design”
Intermediate Developers are asked “Please build me an X” (e.g. Website)
Senior Developers are told “I have this pain …”

12



Strong opinions,
weakly held

Know the evidence for the opinion you have
Be prepared to argue for it – to defend your point of view

BUT NEVER STOP LISTENING

And if the evidence for an alternative position is stronger than your own
Be prepared to change your mind

But, if you pivot in the middle of a meeting, be prepared to for resistance. 
Ask me how I know

13



Software development is a 
team sport

Odd for an industry where the (admittedly fading) stereotype is of people with no social 
skills lurking in basements

14



Interesting problems are 
too big to tackle solo

The average developer delivers 1500 lines of working code into production each year

Interestingly, this is pretty constant regardless of the choice of language: Assembler, C#, 
Ruby, Scala, Go, Rust, Java or Prolog

Even if you’re WAY above average and deliver 10,000 lines in a year … you’re not going to 
build a 600,000 line system by yourself.

15



Diversity of viewpoint 
is essential for success

Hiring a team of people just like yourself doesn’t work.

If the whole world were like me, it would be a very strange place.

This isn’t just a good idea, but an actual fact backed up by proper research. 
(Not an alternative fact)

16



Not everyone on the team 
will be technical

This means learning to talk with different people in different ways

Learn about the Myers-Briggs type indicator, about Belbin team profiles, about the Kolbe 
Conative Index

17



Effective communication 
is therefore an essential skill

Key point – it’s not good communication unless the other person understands

Any judgement about the quality of your explanation is not yours to make

Military approach “Brief Back”
Instruct, listen to student’s explanation, correct

Avoid “Yes, yes, I understand”

18



You can’t specialize in everything

But trying can be a lot of fun

There is no magic
Only a lack of time to understand

19



You don’t live in a box

You have to be aware of what’s going on around you

Doing your job well means making it easier for other people to do theirs

This is where devops comes from

But there’s more to it too.

20



No matter how careful you are, 
you will make mistakes

21



Coding conventions 
help us avoid common mistakes

By writing down the known good ways of doing things, we can avoid mistakes we’ve seen 
before

22



Code reviews 
help us find mistakes

Other people – with fresh eyes – will spot things we don’t.

Code reviewing is a learned skill, persist with it.

It can be hard to have other people criticising your code, but as long as their intention is to 
improve the code it’s all good

23



Static code analysis tools 
detect potential mistakes

24



Source code control helps 
us recover from mistakes

The big red UNDO button that takes us back to what we had last week … or to what’s 
currently in production

25



Automated testing
prevents mistakes

Tests specify the behaviour the system should exhibit and dynamically check it

If the tests fail, either the system is broken or the test specification needs updating

26



Continuous Integration
alerts us to mistakes early

Run all of the analysis and tests frequently

27



Continuous Deployment 
helps us fix mistakes quickly

If it takes six months to deploy a fix, we’re stuck with it for ages, so the consequences of a 
production release with a bug are high

But if we can deploy a fix 20 minutes after we confirm a fix for the problem …

28



The impossible happens

29



One in a million events 
happen every Tuesday

That thing you were told would NEVER happen

Yeah, it happens every Tuesday

30



Leave a good looking corpse

When things go wrong, leave enough debris lying around that someone can diagnose the 
problem

When your program is going to die anyway, the least it can do is tell you who killed it

The WinForms app with a dynamic UX that crashed only when showing a large survey form.

31



You have to cater for change

As far as possible, try to avoid backing yourself into a corner

32



How to answer
“How long?”

33



The difference between
a prediction, a target,

and a commitment

34



A prediction is based 
on everything you already know

35



A target is when 
you’d like to finish

36



A commitment is what 
other people use in their plans

37



If your target is 
later than your prediction, 

you’re conservative

38



If your commitment is 
later than your target, 

you have room to move

39



If your target is 
earlier than your prediction, 

you’re optimistic

40



If your commitment is 
earlier than your target, 
you’re planning to fail

41



If you miss your commitment,
other people will fail to meet their targets

42



The importance of syntax, 
semantics, and idiom

43



Syntax is the way 
statements are constructed

Syntax is easy to learn

44



Correct syntax means 
your code will run

45



Semantics give the 
meaning of the language 

Semantics are not quite so easy to learn, but can be picked up quickly, especially since they 
are common across languages

46



Correct semantics mean 
your code will do what you expect

47



Idiom is about writing 
code in an expected way

Idiom is harder to learn and requires you to read other people’s code

This can be hard

I’ve known plenty of developers who don’t really read anyone else’s code

48



Correct idiom means 
another developer will understand

If you write things in the native idiom for your platform, other developers will already 
know those patterns

Write things in a different way and either
… they assume you’re an idiot and waste time rewriting it
… or they assume you’re not and waste time trying to understand why you did it differently

I’ve worked with a lot of C# code written with C++ idioms, 
Was hard to work with until I understood
Often was working too hard to do something that C# handled in a simpler way (e.g. LINQ to 
objects)

49



Code is written for people,
not for machines

Machines can understand any rubbish
And they don’t care if it’s right or not

50



Given sufficient time, 
every decision looks foolish

51



In 1996, the future of web apps was 
Java applets running in browsers

52



In 1999, building your own data centre 
was necessary for large scale

53



In 2000, building a client/server data 
visualization tool in Delphi made sense.

54



What decisions from today will look 
the most foolish in 10 years time?

55



You are not 
a platform choice

While many recruiters would like to tell you otherwise, you are not a C# developer… or a 
JavaScript, Delphi, Python, Java, Ruby, C++, TypeScript, Scala, Rust, Go or any other kind of 
developer.

56



You are a developer

57



Know Ruby? Learn some Rust
Know Java? Learn some Python

Know C#? Learn some Ruby
Know Visual Basic? Learn some F#

Know JavaScript? Learn some C

58



The more technology you experience, 
the better you become

Learning new technologies will positively impact your capability with technologies you 
already know

Learning a little Ruby made me a better C# developer

59



Career development 
is your responsibility

It’s not your bosses problem

Though, if your boss is willing to finance it, that’s good

60



Read a book for 
career growth every month

61



Learn a new
language every year

Programming language, that is

62



If you’re not embarrassed
by code you wrote six months ago, 

you’re not growing

63



The real world is 
more complex than you think

64



Time is such a simple thing

65



Years can have 366 days
Minutes can have 61 seconds

Days can have 26 hours
Some times happen twice

or don’t happen at all
Not all time zones are whole hours
Not all seconds are 1000ms long

Leap years and leap seconds

Time Zones range from UTC-12 to UTC+14, so in one respect days can be up to 26 hours 
long

Daylight savings changes – but also when clocks resync with network time, might jump 
forward or backward

Pakistan standard time is UTC+5:00; 
… Indian Standard Time is UTC+05:30
… Nepal Standard Time is UTC+05:45

Time zones are political, not geographic

Sometimes clocks are run fast or slow to sync to network time – avoids the discontinuity of 
a jump, but …

66



Names are such simple things

67



A person has exactly one name
People have first names and last names

Names don’t change
Names are case insensitive

Prefixes and Suffixes can be ignored
Families share a common name

Names are assigned at birth

Some people use different names in different arenas of their life
E.g. my son uses Cameron at school, Cam for Theatre

It doesn’t always take a life event for names to change
E.g. At school a friend decided to switch from her middle name (Tania) to her given name 
(Susan)

Patriarchal societies have names based on genealogy, so names are fluid from generation 
to generation

In areas of high child mortality (e.g. Edwardian England) it’s common to get your “real” 
name well after birth, e.g. Puberty or Age 13

68



Characters are such simple things

69



“/ꞓ鿒”.EndsWith(“/”)
char.IsLetterOrDigit(“𐐉”)

char.IsLetter(“𐐞”)

== true
== true
== true

鿒 does not affect the sort order, and EndsWith() uses .Compare() instead 
of .Equals()
(this is probably a bug in the framework)

𐐉 = 'DESERET CAPITAL LETTER SHORT AH' (U+10409)
𐐞 = 'DESERET CAPITAL LETTER ZEE' (U+1041E)

70



Addresses are such simple things.

71



I think you get the point.

Consult with Professor Google or Doctor Bing for interesting facts about addresses and how 
they don’t work the way you do

72



In Closing

73



The job is not to write code
You’re paid to think

Software development 
is a team sport

No matter how careful you are, 
you will make mistakes

The impossible happens
How to answer “How long?”

The importance of syntax, 
semantics, and idiom
Given sufficient time, 

every decision looks foolish
You are not a platform choice

Career development 
is your responsibility

The real world is more
complex than you think

74



To be a great developer 
you need two things:

Willingness to feel totally lost;
Confidence that you will

eventually reach the solution

Couldn’t find an attribution for this

75



Thanks

@unrepentantgeek
bevan@nichesoftware.co.nz 

http://www.nichesoftware.co.nz

76


